Why does Gila elegans have a bony tail? A study of swimming morphology convergence.
نویسندگان
چکیده
Caudal-fin-based swimming is the primary form of locomotion in most fishes. As a result, many species have developed specializations to enhance performance during steady swimming. Specializations that enable high swimming speeds to be maintained for long periods of time include: a streamlined body, high-aspect-ratio (winglike) caudal fin, a shallow caudal peduncle, and high proportions of slow-twitch ("red") axial muscle. We described the locomotor specializations of a fish species native to the Colorado River and compared those specializations to other fish species from this habitat, as well as to a high-performance marine swimmer. The focal species for this study was the bonytail (Gila elegans), which has a distinct morphology when compared with closely related species from the Southwestern United States. Comparative species used in this study were the roundtail chub (Gila robusta), a closely related species from low-flow habitats; the common carp (Cyprinus carpio), an invasive cyprinid also found in low-flow habitats; and the chub mackerel (Scomber japonicus), a model high-performance swimmer from the marine environment. The bonytail had a shallow caudal peduncle and a high-aspect-ratio tail that were similar to those of the chub mackerel. The bonytail also had a more streamlined body than the roundtail chub and the common carp, although not as streamlined as the chub mackerel. The chub mackerel had a significantly higher proportion of red muscle than the other three species, which did not differ from one another. Taken together, the streamlined body, narrow caudal peduncle, and high-aspect-ratio tail of the bonytail suggest that this species has responded to the selection pressures of the historically fast-flowing Colorado River, where flooding events and base flows may have required native species to produce and sustain very high swimming speeds to prevent being washed downstream.
منابع مشابه
P-25: Effect of Water with Different Temperature with or without Forced Swimming on Sperm Parameters in Adult Mouse
Background: Sports, hypothermia and hyperthermia as some stressors inhibit male reproductive functions and are associated with subfertility or infertility. We investigated whether water temperature and chronic swimming are effective on mouse sperm parameters. Materials and Methods: Adult male mouse(N=35) were randomly divided into 7 groups: 1-controls 2-cold water (100C) with swimming 3- cold w...
متن کاملUndulatory swimming in shear-thinning fluids: Experiments with C. elegans
The swimming behaviour of microorganisms can be strongly influenced by the rhe ology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undula tory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer’s kinematic data (including propulsion speed) and vel...
متن کاملForm, function, and fitness: pathways to survival.
Two hypotheses have been considered in the literature regarding how anuran morphology reduces predation risk: by (1) improving escape swimming performance, or (2) using the tail as a lure to draw predator strikes away from the body of the tadpole. We investigated these hypotheses using a modification of the morphology, performance, and fitness path analysis of Arnold (1983, Am. Zool. 23:347-361...
متن کاملMorphological correlates of sprint swimming speed in five species of spadefoot toad tadpoles: comparison of morphometric methods.
The relationship between vertebrate morphology and swimming performance has long interested biologists. Recent work on predator-induced morphological plasticity of anuran tadpoles has increased this interest. Here, I use data on five species of spadefoot toad tadpoles (Scaphiopodidae) to compare linear and geometric morphometrics. Linear measures explain only 7-26% of the variation in swimming ...
متن کاملThe evolution of larval morphology and swimming performance in ascidians.
The complexity of organismal function challenges our ability to understand the evolution of animal locomotion. To meet this challenge, we used a combination of biomechanics, phylogenetic comparative analyses, and theoretical morphology to examine evolutionary changes in body shape and how those changes affected swimming performance in ascidian larvae. Results of phylogenetic comparative analyse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zoology
دوره 119 3 شماره
صفحات -
تاریخ انتشار 2016